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compositions |




Motivation

e Galaxies divide easily into spheroids and disks

* Morphology is strongly correlated with other
properties (color, SF history, environment, etc.)

* Large surveys = lots of galaxies to correlate bulge/
disk properties with other measurements

— Largest sample of B+D decomposed galaxies to date (see

also Allen, et al., 2006; Benson, et al., 2007, Simard, et al.
2011)

— Minimalist B+D models

— Fast, robust 2-D model fitting



Sample

e 71,827 SDSS (data release 8) galaxies
— Spectroscopic sample (m,<17.77)

edshift limits 0.003 <z < 0.05
axies too big, 0.05—




Fits

1. exponential profile 1t < R (6 parameters)
1/4

2. de Vaucouleurs profile # X RY (6)

3. Sérsic profile [t X R/ (7




Two kinds of bulges:
Classical and Pseudo-bulges

Classical bulges are
“ellipticals that happen to
have a prominent disk
around them” (Renzini,
1999).

Elliptical-like bulges

Pseudo-bulges form by
secular processes in a disk
and retain a memory of
their disky-origin.
(Kormendy & Kennicutt,
2004).

Disk-like bulges
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Classical and Pseudo-bulges
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Pseudo-bulge
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Classical Bulge
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Spirals—“no” bulge
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Ellipticals—all bulge




Disks with classical bulges

Disks with pseudo-bulges

Pseudo-bulges are distinguished from classical
bulges using bulge color and flattening



Galaxies that are hard to fit

40% of the galaxies in the sample don’t
have physically meaningful bulge+disk fits




Categorizations

By Number By stellar mass (Bell, 2003)
* 19% classical bulge hosts * 31% classical bulge hosts
9 — 20% bulges

% pseudo-bulge hosts
ipticals * 7% pseudo-bulge
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Luminosity Functions
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Redshifted GaIaX|es
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Redshifted Galaxies
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Bulge/Total Proxies
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Contamination from AGNSs

0.6 T | | | 2.0 | | | |
05k BLAGN _ -
1.5F K -
0.4 | --. - '
So3l | f;whole | 10| N
- y sample E
0.2F =" . !
" 0.5 : -y 7
0.1 —__: o T - "
0.0 | | | / 0.0 Luaz Fl T
O 1 2 3 4 5 0.0 0.5 1.0 1.5




Inclination Corrections

* Based on Maller, et al. 2009—removes trends in K.-band
colors with disk inclination + adjustment

e Correction small for data without 2MASS observations

Maller correction to galaxies Adjusted correction for galaxies with
with K—band without K—band 0.0<¢<0.4 0.4 <qg<0.55
|




Inclination Corrections
Disks Bulges

n=1B+D, bulges.

* Only % the bulge flux is
inclination corrected for
extinction from disk

n=4 B +R, bulges
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Color—Magnitude
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Disk Colors Bulge Colors
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Red Sequence (8,657
gals.): (g-r) >-0.025(M,
+20) +0.661

Green Valley (5,889
gals.): —0.025+(M_ +
20) + 0.661 > (g-r) >
-0.025(M, + 20) +
0.561
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Kormendy Relation
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Classical bulges are better
aligned with elliptica
galaxies.




4000 A Break

Ellipticals

ical bulges are older

Classical

bulges

Pseudo-bulges

80 85 9.0 95 10.0 105 11.0 115

logM, /M




Classical Bulges and Ellipticals

Classical bulges have the same colors, size-
density correlations, and stellar ages as
ellipticals

Ellipticals form via mergers

Disk galaxies form via cold gas accretion

Why do some ‘ellipticals’ acquire disks while
others do not?
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Density Morphology Relation
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Density Morphology for
Classical Bulge Hosts
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Conclusions and Future Work

2-dimensional B+D decompositions are
successful for nearby, intrinsically bright
galaxies with (M <-18)

Classical bulges can be separated from
pseudo-bulges based on color and shape,
these bulges are ‘ellipticals surrounded by a
disk’

How do the disk properties of classical bulge
nosts change with environment?

Does a classical bulge get a disk or not based
primarily on environment?




